6 research outputs found

    Numerical investigation of shock-induced bubble collapse dynamics and fluid–solid interactions during shock-wave lithotripsy

    Get PDF
    © 2023 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND licence. https://creativecommons.org/licenses/by-nc-nd/4.0/In this paper we investigate the bubble collapse dynamics under shock-induced loading near soft and rigid bio-materials, during shock wave lithotripsy. A novel numerical framework was developed, that employs a Diffuse Interface Method (DIM) accounting for the interaction across fluid–solid-gas interfaces. For the resolution of the extended variety of length scales, due to the dynamic and fine interfacial structures, an Adaptive Mesh Refinement (AMR) framework for unstructured grids was incorporated. This multi-material multi-scale approach aims to reduce the numerical diffusion and preserve sharp interfaces. The presented numerical framework is validated for cases of bubble dynamics, under high and low ambient pressure ratios, shock-induced collapses, and wave transmission problems across a fluid–solid interface, against theoretical and numerical results. Three different configurations of shock-induced collapse applications near a kidney stone and soft tissue have been simulated for different stand-off distances and bubble attachment configurations. The obtained results reveal the detailed collapse dynamics, jet formation, solid deformation, rebound, primary and secondary shock wave emissions, and secondary collapse that govern the near-solid collapse and penetration mechanisms. Significant correlations of the problem configuration to the overall collapse mechanisms were found, stemming from the contact angle/attachment of the bubble and from the properties of solid material. In general, bubbles with their center closer to the kidney stone surface produce more violent collapses. For the soft tissue, the bubble movement prior to the collapse is of great importance as new structures can emerge which can trap the liquid jet into induced crevices. Finally, the tissue penetration is examined for these cases and a novel tension-driven tissue injury mechanism is elucidated, emanating from the complex interaction of the bubble/tissue interaction during the secondary collapse phase of an entrapped bubble in an induced crevice with the liquid jet.Peer reviewe

    A new approach to modelling the two way coupling for momentum transfer in a hollow-cone spray

    Full text link
    [EN] A new approach to modelling the interaction between droplets and the carrier phase is suggested. The new model is applied to the analysis of a spray injected into a chamber of quiescent air, using an Eulerian-Lagrangian approach. The conservative formulation of the equations for mass, momentum and energy transport is used for the analysis of the carrier phase. The dispersed phase is modelled using the Lagrangian approach with droplets represented by individual parcels. The implementation of the Discontinuous Galerkin method (ForestDG), based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees, is used in our analysis. Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution for the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an increase of the order of the accuracy of discretisation of shear layers and vortices. The initial domain consists of a graph of unitarian-trees representing hexahedral, prismatic and tetrahedral elements. The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by linked lists of pointers. These are attached to the tree data structure which facilitates the on-the-fly splitting, merging and repartitioning of the computational mesh by rearranging the links of each node of the tree. This enables us to refine the computational mesh in the vicinity of the droplet parcels aiming to accurately resolve the coupling between the two phases.The authors are grateful to EPSRC (grants EP/K005758/1 and EP/M002608/1) for financial supportPapoutsakis, A.; Sazhin, S.; Begg, S.; Danaila, I.; Luddens, F. (2017). A new approach to modelling the two way coupling for momentum transfer in a hollow-cone spray. En Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València. 448-455. https://doi.org/10.4995/ILASS2017.2017.4671OCS44845

    Modelling of the Evolution of a Droplet Cloud in a Turbulent Flow

    Get PDF
    International audienceIn this work we examine the effect of turbulent mixing on the droplet number density for a cloud of droplets dispersingin a turbulent flow field. The Lagrangian droplets are assumed to be transported and dispersed by the large scalestructures of a resolved field. However, turbulent fluctuations not visible to the filtered solution induce unresolveddispersion of droplets within a droplet cloud. The Fully Lagrangian Approach (FLA) is used to model resolveddroplet dispersion. A model is presented for the prediction of the unresolved turbulent mixing of the droplet numberdensity for a droplet cloud. This model takes into account the turbulent flux for the droplets permeating the surfaceof the cloud via turbulent diffusion. Turbulent diffusion is assumed to be driven by the kinetic energy of the dropletfluctuations induced by the turbulent kinetic energy of the carrier phase. This assumption is supported by DirectNumerical Simulations (DNS) of homogeneous and isotropic turbulence. Additionally, DNS of transition of a planarjet to turbulence is used for the assessment of the mixing model which we use. The calculation of the spatialderivatives for the droplet number densities is performed by projecting the FLA solution on the Eulerian mesh,resulting in a hybrid Lagrangian-Eulerian approach to the problem

    An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows

    Get PDF
    We present an Adaptive Mesh Refinement (AMR) method suitable for hybrid unstructured meshes that allows for local refinement and de-refinement of the computational grid during the evolution of the flow. The adaptive implementation of the Discontinuous Galerkin (DG) method introduced in this work (ForestDG) is based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution of the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an increase of the order of accuracy in the region of shear layers and vortices. A graph of unitarian-trees, representing hexahedral, prismatic and tetrahedral elements is used for the representation of the initial domain. The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by linked lists of pointers. An explicit calculation of these relations, presented in this paper, facilitates the on-the-fly splitting, merging and repartitioning of the computational mesh by rearranging the links of each node of the tree with a minimal computational overhead. The modal basis used in the DG implementation facilitates the mapping of the fluxes across the non conformal faces. The AMR methodology is presented and assessed using a series of inviscid and viscous test cases. Also, the AMR methodology is used for the modelling of the interaction between droplets and the carrier phase in a two-phase flow. This approach is applied to the analysis of a spray injected into a chamber of quiescent air, using the Eulerian–Lagrangian approach. This enables us to refine the computational mesh in the vicinity of the droplet parcels and accurately resolve the coupling between the two phases
    corecore